Frobenius formula

In mathematics, specifically in representation theory, the Frobenius formula, introduced by G. Frobenius, computes the characters of irreducible representations of the symmetric group Sn. Among the other applications, the formula can be used to derive the hook length formula.

Statement

Let χ λ {\displaystyle \chi _{\lambda }} be the character of an irreducible representation of the symmetric group S n {\displaystyle S_{n}} corresponding to a partition λ {\displaystyle \lambda } of n: n = λ 1 + + λ k {\displaystyle n=\lambda _{1}+\cdots +\lambda _{k}} and j = λ j + k j {\displaystyle \ell _{j}=\lambda _{j}+k-j} . For each partition μ {\displaystyle \mu } of n, let C ( μ ) {\displaystyle C(\mu )} denote the conjugacy class in S n {\displaystyle S_{n}} corresponding to it (cf. the example below), and let i j {\displaystyle i_{j}} denote the number of times j appears in μ {\displaystyle \mu } (so j i j j = n {\displaystyle \sum _{j}i_{j}j=n} ). Then the Frobenius formula states that the constant value of χ λ {\displaystyle \chi _{\lambda }} on C ( μ ) , {\displaystyle C(\mu ),}

χ λ ( C ( μ ) ) , {\displaystyle \chi _{\lambda }(C(\mu )),}

is the coefficient of the monomial x 1 1 x k k {\displaystyle x_{1}^{\ell _{1}}\dots x_{k}^{\ell _{k}}} in the homogeneous polynomial in k {\displaystyle k} variables

i < j k ( x i x j ) j P j ( x 1 , , x k ) i j , {\displaystyle \prod _{i<j}^{k}(x_{i}-x_{j})\;\prod _{j}P_{j}(x_{1},\dots ,x_{k})^{i_{j}},}

where P j ( x 1 , , x k ) = x 1 j + + x k j {\displaystyle P_{j}(x_{1},\dots ,x_{k})=x_{1}^{j}+\dots +x_{k}^{j}} is the j {\displaystyle j} -th power sum.

Example: Take n = 4 {\displaystyle n=4} . Let λ : 4 = 2 + 2 = λ 1 + λ 2 {\displaystyle \lambda :4=2+2=\lambda _{1}+\lambda _{2}} and hence k = 2 {\displaystyle k=2} , 1 = 3 {\displaystyle \ell _{1}=3} , 2 = 2 {\displaystyle \ell _{2}=2} . If μ : 4 = 1 + 1 + 1 + 1 {\displaystyle \mu :4=1+1+1+1} ( i 1 = 4 {\displaystyle i_{1}=4} ), which corresponds to the class of the identity element, then χ λ ( C ( μ ) ) {\displaystyle \chi _{\lambda }(C(\mu ))} is the coefficient of x 1 3 x 2 2 {\displaystyle x_{1}^{3}x_{2}^{2}} in

( x 1 x 2 ) P 1 ( x 1 , x 2 ) 4 = ( x 1 x 2 ) ( x 1 + x 2 ) 4 {\displaystyle (x_{1}-x_{2})P_{1}(x_{1},x_{2})^{4}=(x_{1}-x_{2})(x_{1}+x_{2})^{4}}

which is 2. Similarly, if μ : 4 = 3 + 1 {\displaystyle \mu :4=3+1} (the class of a 3-cycle times an 1-cycle) and i 1 = i 3 = 1 {\displaystyle i_{1}=i_{3}=1} , then χ λ ( C ( μ ) ) {\displaystyle \chi _{\lambda }(C(\mu ))} , given by

( x 1 x 2 ) P 1 ( x 1 , x 2 ) P 3 ( x 1 , x 2 ) = ( x 1 x 2 ) ( x 1 + x 2 ) ( x 1 3 + x 2 3 ) , {\displaystyle (x_{1}-x_{2})P_{1}(x_{1},x_{2})P_{3}(x_{1},x_{2})=(x_{1}-x_{2})(x_{1}+x_{2})(x_{1}^{3}+x_{2}^{3}),}

is −1.

For the identity representation, k = 1 {\displaystyle k=1} and λ 1 = n = 1 {\displaystyle \lambda _{1}=n=\ell _{1}} . The character χ λ ( C ( μ ) ) {\displaystyle \chi _{\lambda }(C(\mu ))} will be equal to the coefficient of x 1 n {\displaystyle x_{1}^{n}} in j P j ( x 1 ) i j = j x 1 i j j = x 1 j i j j = x 1 n {\displaystyle \prod _{j}P_{j}(x_{1})^{i_{j}}=\prod _{j}x_{1}^{i_{j}j}=x_{1}^{\sum _{j}i_{j}j}=x_{1}^{n}} , which is 1 for any μ {\displaystyle \mu } as expected.

Analogues

Arun Ram gives a q-analog of the Frobenius formula.[1]

See also

References

  • Ram, Arun (1991). "A Frobenius formula for the characters of the Hecke algebras". Inventiones mathematicae. 106 (1): 461–488.
  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2 MR1354144


  • v
  • t
  • e