第二基本形式

微分幾何学における第二基本形式: second fundamental form)または形テンソル(shape tensor)とは、3次元ユークリッド空間の滑らかな曲面(smooth surface)の接平面上の2次形式を言う。普通、 I I {\displaystyle \mathrm {I\!I} } と表記される(「2」と読む)。第一基本形式とともに、曲面の外在的不変量、例えば曲面の主曲率、を定義するのに役立つ。より一般的には、このような2次形式は、リーマン多様に滑らかに埋め込まれた部分多様体に対して定義される。

R 3 {\displaystyle \mathbb {R} ^{3}} の曲面

第二基本形式の定義

動機

R3の媒介変数表示された曲面 S の第二基本形式は、ガウスによって導入され、研究された。まず、曲面が表面が2回連続的微分可能(continuously differentiable)な関数 z = f(x,y) のグラフであり、平面 z = 0 が原点で曲面に接していると仮定する。そして、 f とそれの x および y に関する偏導関数は、(0,0)でゼロになるとする。それ故、(0,0)での fテイラー展開は次のように2次の項で始まることになる。

z = L x 2 2 + M x y + N y 2 2 + higher order terms , {\displaystyle z=L{\frac {x^{2}}{2}}+Mxy+N{\frac {y^{2}}{2}}+{\text{higher order terms}}\,,}

座標 (x,y) で表される原点における第二基本形式は2次形式となる。

L d x 2 + 2 M d x d y + N d y 2 . {\displaystyle L\,dx^{2}+2M\,dx\,dy+N\,dy^{2}\,.}

S 上の滑らかな点 P に対し、平面 z = 0PS に接するように座標系を選択し、同様の方法で第二基本形式を定義できる。

古典的な記法

一般的な媒介変数表示された曲面の第二基本形式は、次のように定義される。 r = r(u,v)R3 の曲面の正則(regular)な媒介変数表示とする。ここで、 r は2変数の滑らかなベクトル値関数である。uv に関する r の偏導関数は rurv で表示するのが普通である。媒介変数表示の正則性(regularity)は、r の定義域において 任意の(u,v) に対して rurv が線型独立であることを意味する。すなわち、rurv は、各点で S の接平面を張る(span)ことになる。同様に、外積 ru × rv は曲面に垂直な非ゼロのベクトルとなる。媒介変数表示は、したがって、単位法線ベクトル n の場を次のように定義する。

n = r u × r v | r u × r v | . {\displaystyle \mathbf {n} ={\frac {\mathbf {r} _{u}\times \mathbf {r} _{v}}{|\mathbf {r} _{u}\times \mathbf {r} _{v}|}}\,.}

第二基本形式はたいてい次のように書かれる。

I I = L d u 2 + 2 M d u d v + N d v 2 , {\displaystyle \mathrm {I\!I} =L\,du^{2}+2M\,du\,dv+N\,dv^{2}\,,}

接平面の基底 {ru, rv} の行列は次のようになる。

[ L M M N ] . {\displaystyle {\begin{bmatrix}L&M\\M&N\end{bmatrix}}\,.}

媒介変数表示による uv 平面における与えられた点での係数 L, M, N は、その点での r の2次偏導関数を、S の法線上に射影することによって与えられ、内積を使用して次のように計算できる。

L = r u u n , M = r u v n , N = r v v n . {\displaystyle L=\mathbf {r} _{uu}\cdot \mathbf {n} \,,\quad M=\mathbf {r} _{uv}\cdot \mathbf {n} \,,\quad N=\mathbf {r} _{vv}\cdot \mathbf {n} \,.}

ヘッセ行列 H の符号付き距離場(signed distance field)に対して、第二基本形式の係数は次のように計算される。

L = r u H r u , M = r u H r v , N = r v H r v . {\displaystyle L=-\mathbf {r} _{u}\cdot \mathbf {H} \cdot \mathbf {r} _{u}\,,\quad M=-\mathbf {r} _{u}\cdot \mathbf {H} \cdot \mathbf {r} _{v}\,,\quad N=-\mathbf {r} _{v}\cdot \mathbf {H} \cdot \mathbf {r} _{v}\,.}

物理学における記法

一般的な媒介変数表示された曲面 S の第二基本形式は、次のように定義される。

r = r(u1,u2)R3 の曲面の正則な媒介変数表示とする。ここで、r は2変数の滑らかなベクトル値関数である。ruα に関する偏導関数を rαα = 1, 2)と表示するのが普通である。媒介変数表示の正則性(regularity)は、r1r2r の定義域内の任意の (u1,u2) に対して線形独立であることを意味する。したがって、r1r2 が各点で S の接平面を張る(span)ことを意味する。同様に、外積 r1 × r2 は曲面に垂直な非ゼロのベクトルとなる。媒介変数表示は、したがって、単位法線ベクトル n の場を次のように定義する。

n = r 1 × r 2 | r 1 × r 2 | . {\displaystyle \mathbf {n} ={\frac {\mathbf {r} _{1}\times \mathbf {r} _{2}}{|\mathbf {r} _{1}\times \mathbf {r} _{2}|}}\,.}

第二基本形式は大抵次のように書かれる。

I I = b α β d u α d u β . {\displaystyle \mathrm {I\!I} =b_{\alpha \beta }\,du^{\alpha }\,du^{\beta }\,.}

上記の式は、アインシュタインの縮約記法を用いている。

媒介変数表示された u1u2 平面における与えられた点における第二基本形式の係数 bαβ は、その点での r の2次偏導関数を、S の法線に射影することで与えられる。そして、法線ベクトル n を用いて次のように計算できる。

b α β = r α β     γ n γ . {\displaystyle b_{\alpha \beta }=r_{\,\alpha \beta }^{\ \ \,\gamma }n_{\gamma }\,.}

リーマン多様体の超曲面

ユークリッド空間において、第二基本形式は次のように与えられる。

I I ( v , w ) = d ν ( v ) , w ν {\displaystyle \mathrm {I\!I} (v,w)=-\langle d\nu (v),w\rangle \nu }

ここで、 νガウス写像であり、 はベクトル値の微分形式と見なされる ν微分であり、括弧はユークリッド空間の計量テンソルを表示している。

より一般的には、リーマン多様体では、第二基本形式は、超曲面の Sで示される形作用素(shape operator)を記述するための同等の方法である。

I I ( v , w ) = S ( v ) , w n = v n , w n = n , v w n , {\displaystyle \mathrm {I} \!\mathrm {I} (v,w)=\langle S(v),w\rangle n=-\langle \nabla _{v}n,w\rangle n=\langle n,\nabla _{v}w\rangle n\,,}

ここで、vw は全体多様体(ambient manifold)の共変微分n は超曲面上の法線ベクトル場を表示している。(アフィン接続捩じれがない場合、第二基本形式は対称となる。 )

第二基本形式の符号は、 n の方向の選択に依存する(これは超曲面の共方向(co-orientation)と呼ばれる。ユークリッド空間の曲面の場合、これは同様に曲面の向きの選択によって与えられる。)

任意の余次元への一般化

第二基本形式は、任意の余次元(codimension)に一般化できる。その場合、それは法ベクトル束(normal bundle)における値を持つ接空間上の二次形式である。次のように定義できる。

I I ( v , w ) = ( v w ) , {\displaystyle \mathrm {I\!I} (v,w)=(\nabla _{v}w)^{\bot }\,,}

ここで、 ( v w ) {\displaystyle (\nabla _{v}w)^{\bot }} 共変微分 v w {\displaystyle \nabla _{v}w} の法ベクトル束への直交射影(orthogonal projection)を表す。

ユークリッド空間では、部分多様体曲率テンソルは次の式で表すことができる。

R ( u , v ) w , z = I I ( u , z ) , I I ( v , w ) I I ( u , w ) , I I ( v , z ) . {\displaystyle \langle R(u,v)w,z\rangle =\langle \mathrm {I} \!\mathrm {I} (u,z),\mathrm {I} \!\mathrm {I} (v,w)\rangle -\langle \mathrm {I} \!\mathrm {I} (u,w),\mathrm {I} \!\mathrm {I} (v,z)\rangle .}

これは、ガウスのTheorema Egregiumの一般化と見なすことができるため、ガウス方程式と呼ばれる。

一般的なリーマン多様体の場合、全体空間(ambient space)の曲率を追加する必要がある。Nリーマン多様体 (M,g) に埋め込まれた多様体である場合、 (M,g) から誘導された計量を持つ N の曲率テンソル RN は、第二基本形式と M の曲率テンソル RM を用いて次のように表現することができる。

R N ( u , v ) w , z = R M ( u , v ) w , z + I I ( u , z ) , I I ( v , w ) I I ( u , w ) , I I ( v , z ) . {\displaystyle \langle R_{N}(u,v)w,z\rangle =\langle R_{M}(u,v)w,z\rangle +\langle \mathrm {I} \!\mathrm {I} (u,z),\mathrm {I} \!\mathrm {I} (v,w)\rangle -\langle \mathrm {I} \!\mathrm {I} (u,w),\mathrm {I} \!\mathrm {I} (v,z)\rangle \,.}

関連項目

参考文献

  • Guggenheimer, Heinrich (1977). “Chapter 10. Surfaces”. Differential Geometry. Dover. ISBN 0-486-63433-7 
  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996). Foundations of Differential Geometry, Vol. 2 (New ed.). Wiley-Interscience. ISBN 0-471-15732-5 
  • Spivak, Michael (1999). A Comprehensive introduction to differential geometry (Volume 3). Publish or Perish. ISBN 0-914098-72-1 

外部リンク


微分幾何学において定義される様々な曲率の概念
曲線の微分幾何学(英語版)
リーマン幾何学
部分リーマン多様体の曲率
接続の曲率(英語版)